Electrospun mullite fibers from the sol–gel precursor

نویسندگان

  • Zhaoxi Chen
  • Zhao Zhang
  • Chen-Chih Tsai
  • Konstantin Kornev
  • Igor Luzinov
  • Minghao Fang
  • Fei Peng
چکیده

Mullite fibers with diameters from 400 nm to 10 lm were fabricated from the sol–gel precursors using the electrospinning method. During the precursor synthesis, the hydrolysis was controlled to obtain highly viscous mullite sols. The viscous mullite sols were then diluted and mixed with a small amount of polyethylene oxide. Controlling the precursor rheology and spinning conditions, we obtained mullite fibers with the relatively uniform microstructure and narrow diameter distributions for each e-spinning condition. We carried out the mechanical tests for the electrospun mullite fibers since the mechanical performances of e-spin ceramic fibers have not been often reported. The tensile strengths of electrospun mullite fibers were determined using the single filament tensile test. The average tensile strength was 1.46 GPa for 5 mm gauge length, and 1.25 GPa for 10 mm gauge length. The Weibull modulus was estimated to be 3–4, which is comparable to commercial ceramic fibers. The fiber exhibited an average elastic modulus of 100 GPa. In this study, we show that controlling the hydrolysis can reduce the polymer additive amount required for electrospinning. Thus the electrospun mullite fiber has the similar mechanical properties to the dry spun counterparts.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Non-Isothermal Dehydration Kinetics of Diphasic Mullite Precursor Gel

Aluminosilicate gel precursor having mullite composition was synthesized from inorganic salts of aluminum and silicon by employing the sol-gel method. Chemical analysis, surface area and bulk density measurements were performed to characterize the dried gel. The course of the mullitization was examined by FT-IR analysis which confirmed the diphasic nature of the gel. ...

متن کامل

Sol-gel synthesis and characterization of alumina-15%mullite composite nanopowder

Homogeneous distribution of mullite in the matrix of alumina can be obtained through sol-gel method. In this work, nanopowder of alumina-mullite composite was synthesized with high homogeneity and high purity. So aluminum chloride hexahydrate and tetraethyl orthosilicate were used instead of alumina or mullite nanopowder. Studying the simultaneouse thermal analysis (STA) of mullite precursor re...

متن کامل

Densification and mechanical properties of mullite–SiC nanocomposites synthesized through sol–gel coated precursors

Mullite–SiC nanocomposites are synthesized by introducing surface modified sol–gel mullite coated SiC particles in the matrix and densification and associated microstructural features of such precursor are reported. Nanosize SiC (average size 180 nm) surface was first provided with a mullite precursor coating which was characterized by the X-ray analysis and TEM. An average coating thickness of...

متن کامل

Studies on the Formation of Mullite from Diphasic Al2O3-SiO2 Gel by Fourier Transform Infrared Spectroscopy

Al2O3-SiO2 diphasic gel was synthesized by sol gel route from aluminium nitrate and silicic acid following aqueous phase colloidal interaction. The precursor gel powder was thoroughly characterized by chemical analysis, measurement of surface area and bulk density measurement. The gel powder was further characterized by thermogravimetry, XRD diffraction stud...

متن کامل

Fabrication, Characterization and Process Parameters Optimization of Electrospun 58S Bioactive Glass Submicron Fibers

Over the past decades, bioactive glass (BG) has been of a great interest in the bone regeneration field, due to its excellent biocompatibility, bioactivity and osteoconductivity. Herein, fabrication of bioactive glass as one-dimensional fibers by employing an Electrospinning process is reported. The Sol-Gel method was chosen considering the final fibers smoothness and homogeneity. Starting sol ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015